I. Tell whether the function shows growth or decay. Then find the percent of increase or decrease. Find some points, and then graph. Finally, give the domain and range.

a. \(y = 2^x \)

Growth or Decay? _______________
Percent Increase/Decrease? ____________
Domain: __________ Range: __________

b. \(y = \frac{1}{2} \left(\frac{1}{4} \right)^x \)

Growth or Decay? _______________
Percent Increase/Decrease? ____________
Domain: __________ Range: __________

II. Write an exponential function \(y = ab^x \) to model the information. Then use your model to make the requested prediction.

3. Suppose you buy a computer that costs $1150 and expect for its value to depreciate by 42% each year. What will be the computer’s resale value in 3 years?

4. The number of bacteria in a culture increases by 12% every hour until available space is depleted. 200 bacteria are present to start. Predict the number of bacteria present after 48 hours.

III. Write an exponential function \(y = ab^x \) to model the information. Then use your calculator to estimate the time.

5. If a stock priced at $27 increases at a rate of 6.04% each year, when will it be worth approximately $100? Round to the nearest tenth of a year.

6. If $28,500 automobile depreciates at a rate of 15% each year, when will it be worth approximately $12,000? Round to the nearest tenth of a year.
IV. Given \(f(x) \), find the equation of its inverse, \(f^{-1}(x) \).

7. \(f(x) = \frac{x}{7} + 5 \)

8. \(f(x) = -2x - 7 \)

V. Rewrite each equation in logarithmic form.

9. \(\left(\frac{1}{2} \right)^{-4} = 16 \)

10. \(5^3 = 125 \)

11. \(10^{-4} = 0.0001 \)

VI. Rewrite each equation in exponential form.

12. \(\log_2 32 = 5 \)

13. \(\log 1000 = 3 \)

14. \(\log_3 \frac{1}{81} = -4 \)

VII. Evaluate each logarithm WITHOUT the calculator.

15. \(\log_4 16 \)

16. \(\log 1 \)

17. \(\log_\frac{1}{3} 27 \)

18. \(\log_5 125 \)

VIII. More with Logarithms.

19. Use the given \(x \) -values to graph each function. Then graph its inverse. Give the equation of the inverse, as well as the domain and range for each function.

\[f(x) = \left(\frac{1}{2} \right)^x \] for \(x = -3, -1, 0, 1, \) and \(2 \)